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Motivation

Building cryptographic implementations is challenging
* Requires usage of secure cryptographic schemes ‘

* Additional defences mechanisms against
implementation attacks

Power Analysis Fault Attacks



Basic I[dea — Differential Fault Attack [BS97]

* Get physical access to target device
* Set plaintexts
* Observe ciphertexts
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Basic I[dea — Differential Fault Attack [BS97]

* Get physical access to target device
* Set plaintexts
* Observe ciphertexts

* Cause erroneous computations via
* Clock glitches
* Voltage glitches
C C

e Lasers
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* Observe faulty and correct ciphertext
* Key recovery exploits differences in state bytes



Countermeasures — Detection
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Countermeasures — Detection

o * Use redundancy to detect faults
- ~N ~ * Fault detected - no ciphertext
: * 2 identical faults necessary for attack
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Countermeasures — Infection

PT e Use redundancy, interleaved computation and
: dummy rounds
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Countermeasures — Infection
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Countermeasures — Infection

PT * Use redundancy, interleaved computation and
¥ : dummy rounds
e ™
x y * Faults are amplified s.t. ciphertext is not related to
; e the key anymore = key recovery not possible
é 5“?; * Fault attacks still possible but quite hard ...
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Statistical Ineffective Fault Attacks [DEK*18]
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 |neffective Fault Attacks [Cla07]

* Exploits only correct ciphertexts (similar to safe error attacks)
e Requires precise faults with known effect

e Statistical Fault Analysis [FILT13]

* Any fault, even if effect is unknown
* Mitigated by detection/infection
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 |neffective Fault Attacks [Cla07]
* Exploits only correct ciphertexts (similar to safe error attacks)
e Requires precise faults with known effect

e Statistical Fault Analysis [FILT13]

* Any fault, even if effect is unknown
* Mitigated by detection/infection

= Statistical Ineffective Fault Attacks [DEK*18]

* Exploits only correct ciphertexts
* Any fault, even if effect is unknown



Basic Idea — Statistical Fault Attacks [FJLT13]

* Exploit faulty ciphertexts only

* Plaintexts can be unknown but need to vary
* Opposite requirement compared to differential attacks

e Usually needs several faulted encryptions

* Key recovery exploits statistical distributions of state bytes
(in contrast to differences)



Statistical Fault Attacks on AES-128

AES is a PRP %;

SHIFT ROWS

 Distribution of ciphertext is uniform
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* (Also after only 9 rounds)
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Statistical Fault Attacks on AES-128

Assume fault disturbs distribution of %
one state byte in round 9

e Stuck-at, bitflip, random, etc.

ROUND 8

KEY ADD

e Attacker does not need to know the
caused bias

SUB BYTES

SHIFT ROWS

ROUND 9
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MIX COLUMNS

* 4 ciphertext bytes are affected
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Statistical Fault Attacks on AES-128

4 state bytes in round 9 can be
calculated from

* 4 ciphertext bytes
e 4 key bytes

ROUND 9 ROUND 8

e YavavtatatlayaYatalh
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ROUND 10
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KEY ADD
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Statistical Fault Attacks on AES-128

4 state bytes in round 9 can be
calculated from
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Statistical Fault Attacks on AES-128

4 state bytes in round 9 can be
calculated from
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Statistical Fault Attacks on AES-128

4 state bytes in round 9 can be
calculated from
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* 4 ciphertext bytes : | o
* 4 key bytes (incorrect) ] E 3
é ( SHIFT ROWS )<

8 ( MIX COLUMNS )

C )

E ( SUB BYTES )

§ ( SHIFT ROWS )

- Complexity of the attack depends :

*

on bias caused by the fault



Considered Fault Models [FJLT13]

* Stuck-at zero fault model with probability 1
-6 faulty encryptions

* Stuck-at zero fault model with probability 1/2
—14 faulty encryptions

e Stuck-at fault model with an unknown and random value e
—>80 faulty encryptions



Considered Fault Models [FJLT13]

* Stuck-at zero fault model with probability 1
-6 faulty encryptions

* Stuck-at zero fault model with probability 1/2
—14 faulty encryptions

e Stuck-at fault model with an unknown and random value e
—>80 faulty encryptions

* In practice the number of needed faulty encryptions also
depends on the fault setup, injection method, etc.



Practical Evaluation/Results [DEK*16]

* AES Software Implementation
Method: clock glitches
# Faulty encryptions: 30

* AES Hardware co-processor A

Method: clock glitches
# Faulty encryptions: 20

* AES Hardware co-processor B
Method: clock glitches
# Faulty encryptions: 1200



Statistical Ineffective Fault Attacks [DEK*18]
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Statistical Ineffective Fault Attacks [DEK*18]
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Statistical Ineffective Fault Attacks [DEK*18]
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* For simplicity, assume stuck-at zero
fault (others work as well)
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e Correct ciphertexts still show a bias
in round 9
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Statistical Ineffective Fault Attacks [DEK*18]
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Ineffective Faults on AND-gate
* Example (AND-gate)
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* Example (AND-gate)
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Ineffective Faults on AND-gate

* Example (AND-gate)

AB | 0BZ 1BY
@@ B

* If we get an alarm then we know that A=1
otherwise A=0 with high probability (>0.5)



Ineffective Faults on AND

 Stuck-at fault: If we get an alarm then we know that A=1 otherwise
A=0 with probability 2/3
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Ineffective Faults on AND

* Bit-flip fault: If we get an alarm then we know that A=1 otherwise
A=0 with probability 1
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Masking does not prevent the Attack [DEG*18]

* Example (AND-gate)

ABY | A B.7 B, A,
Nslsllsle
C | G o

AND-gate Masked AND-gate



Other Masking Schemes

 Similar results for other masking schemes
* ISW masking scheme + Improvements
* Tl masking scheme
* DOM masking scheme



Other Masking Schemes

 Similar results for other masking schemes
* ISW masking scheme + Improvements
* Tl masking scheme
* DOM masking scheme

* Works in a similar way for S-Boxes



Practical Evaluation/Results [DEG*18]

* Higher Order Masked AES by Rivain et al. with time redundancy

* Implementation by Coron
* ATXmega 128D4
e 10"-order masked AES
 arbitrary time redundancy

* Fault Injection

 Target: S-box in the 9t"-round
* Method: clock glitches



Results SFA: Correct Key
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Results SFA: Wrong Key
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Results SIFA: Correct Key
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Results SIFA: Wrong Key
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Statistical Ineffective Fault Attacks

* SIFA is a quite powerful attack

* Can break both fault and power analysis countermeasures
e Requires only one fault per computation

 Attacker does not need to hit specific bits/bytes

e Attacker does not need know how the faults influence the
computation



Countermeasures

* Sensors to detect tampering

e Adding noise (hiding)
* Limit number of outputs (e.g. fault counters)

 Error Correction



Basic ldea — Protecting against SIFA [DDE*20]

e Build a masked and redundant circuit from some basic circuits such
that critical faults will always be detected

* Each basic circuit operates only on a incomplete set of shares and
IS @ permutation

e Permutation can either be a linear function or a variant of the
Toffoli-gate (simplest invertible non-linear function)



Toffoli-gate

* Simplest invertible non-linear function

a b C

* Any bit-flip fault /difference at input will
BH—@ propagate to the output and detected

e But stuck-at faults might not be detected
a b c and will leak information

- Masked Toffoli-gate



Masked Toffoli-gate

* Constructed from 4 Toffoli-gate

ao ai bo || b1 || Co || C1
* |s an invertible function = bit-flip
o—© fault will be detected
SARO e Each Toffoli-gate only operates on
A —e incomplete set of shares = a single
D) stuck-at fault will not leak
information about the actual value
ao ai bo || b1 |] Co |] 1

— Singel-fault SIFA robustness



Application to S-boxes [DDE*20]

* This approach can be implemented quite efficiently

e Shown to work for all 3-bit and many 4-bit S-boxes

* No noticeable performance difference to regular masked S-boxes
e Approach can even be extended to larger fields (e.g. AES S-boxes)



Application to S-boxes [DDE*20]

* This approach can be implemented quite efficiently

e Shown to work for all 3-bit and many 4-bit S-boxes

* No noticeable performance difference to regular masked S-boxes
e Approach can even be extended to larger fields (e.g. AES S-boxes)

* Construction has been formally verified [HPB21]



summary

* SIFA is a quite powerful attack
* Works for many ciphers and encryption schemes
e Can break both detection and infection fault countermeasures

* In practice the complexity of the attack depends on many factors
* Fault setup, fault method, ...

* Dedicated countermasueres against SIFA are important and an
interessting area of research



Thank you for your attention!

Questions?
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